SOME SOLUTIONS OF THE STEFAN PROBLEM

A. M. Tsybin UDC 536.2.01

Some particular solutions of the Stefan problem are presented.

We consider the following problem:
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We make the substitution x = §(1)z. Equation (1) then transforms to
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The variables in Eq. (6) are separable when and only when
tE(t)=PpV 7+ const , where B = const >0.

Of the Stefan problems in which separation of variables is effective, one can note the results obtained
by Sanders [1]. Considering Eq. (5),
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By substituting Eq. (7) into Eq. (6), performing the separationof variables, and allowing for Eq. (2), we obtain
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where ®(a, v; z) is a degenerate hypergeometric function [3]; A are numbers which, in general, are com-
plex; C,j, and C,), are real constants.

By fulfilling the conditions (2)-(4), we obtain
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TABLE 1. Values of f(u; 8%/4a) (20)

Bi4a

b 8,01 0.1 0,5 1 3
—50 —75,2967 —50,1187 —50,0000 —50,0000 | —B50,0000
—45 —71,3062 —45,1606 —45,0000 —45,0000 | —45,0000
—40 —67,3589 —40,2192 —40,0000 —40,0000 | —4%0,0000
—35 62,4565 35,3018 —35,0001 —35.0000 -| —35,0000
—30 —59,6011 —30,4196 —30,0002 30,0000 | —30,0000
—25 —55,7947 —25,5895 —25,0005 —25,0000 | —25,0000
—20 —52,0395 —20,8374 —20,0017 —90,0000 | —20,0000
—15 —-48,3375 —16,2032 —15,0061 —15,0001 | —15,0000
—10 ‘44,6911 —11,749% —10,0249 —10,0009 | —10,0000
—9 —43,9688 —10,8881 —9,0338 —9,0014 —9,0000
—8, —43,2487 —10,0386 —8,0461 —8§,0024 .—8,0000
T —42,5310 —9,2022 —17,0636 —7,0041 —7,0000
—6 —41,8157 —8,3799 —6,0886 —6.0072 —6,0000
—5 —41,1028 —7,5731 —5,1248 —5,0013 —35,0000
— —40,3923 —6,7831 —4,1776 —4,0241 —4,0001
—3 —39,6842 —6,0114 —3,2557 —3,0464 —3,0004
—2 —38,9786 —5,2598 —2,3725 —2,0932 —2,0022
—1 —38,2755 —4,5299 —1,5490 —1,1965 —1,0143

0 —37,5749 —3,8236 —0,8173 —0,4330 —0,1371

The rule for the differentiation of a degenerate hypergeometric function 3] was used in the derivation of
Eq. (11). ¥
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the condition (10) is satisfied.
Let
@(t) = P+ Qr, _ {13)

where P and Q are real negative numbers. By successively setting A = 0 and A = ¢ and taking [3] into con-
sideration, we then find
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and if u satisfies the transcendental equation
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Equations (16) and (17) indicate that 8 and C,, will be precisely the same as in the well-known self-
similar solution.

Further, aésuming that a solution of the transcendental Eq. (19) exists, one can find y and then Cu-
As a result, a solution can be found for the problem of (1)~(5) under the assumption ¢(7) satisfies the condi-
tion (13).

Numerical values of the function (20) for real arguments are given in Table 1.

The tabulated results provide a basis for cdnsidering that there are also values of p for which the
relation (19) is valid to a high degree of accuracy. For example, when (3% 4a) > 2,

f(u;%).—u <108,

and therefore one can always point out a value of 7 for which the boundary condition (15) is satisfied with
sufficient accuracy. This demonstrates that there are also other functions in addition to ¢(7) = congt <0
satisfying the relation (13) for which the zero isotherm grows precisely as in the self-similar solution but
for which the temperature distribution in the frozen zone will be different.

NOTATION

T is the temperature;

T is the time;

a ig the thermal diffusivity;

£(1)  is the zeroth isotherm path;

X is the space coordinate;

B is the quotient from division of phase-transition enthalpy by thermal conductivity of frozen-zone
material.
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